Analysis of lateral transport through the inversion layer in amorphous silicon/crystalline silicon heterojunction solar cells
نویسندگان
چکیده
In amorphous/crystalline silicon heterojunction solar cells, an inversion layer is present at the front interface. By combining numerical simulations and experiments, we examine the contribution of the inversion layer to lateral transport and assess whether this layer can be exploited to replace the front transparent conductive oxide (TCO) in devices. For this, heterojunction solar cells of different areas (2 Â 2, 4 Â 4, and 6 Â 6 mm 2) with and without TCO layers on the front side were prepared. Laser-beam-induced current measurements are compared with simulation results from the ASPIN2 semiconductor simulator. Current collection is constant across millimeter distances for cells with TCO; however, carriers traveling more than a few hundred microns in cells without TCO recombine before they can be collected. Simulations show that increasing the valence band offset increases the concentration of holes under the surface of n-type crystalline silicon, which increases the conductivity of the inversion layer. Unfortunately, this also impedes transport across the barrier to the emitter. We conclude that the lateral conductivity of the inversion layer may not suffice to fully replace the front TCO in heterojunction devices. V C 2013 AIP Publishing LLC.
منابع مشابه
Valence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells
To investigate the hole transport across amorphous/crystalline silicon heterojunctions, solar cells with varying band offsets were fabricated using amorphous silicon suboxide films. The suboxides enable good passivation if covered by a doped amorphous silicon layer. Increasing valence band offsets yield rising hole transport barriers and reduced device effciencies. Carrier transport by thermal ...
متن کاملAmorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells
Articles you may be interested in Optimized amorphous silicon oxide buffer layers for silicon heterojunction solar cells with microcrystalline silicon oxide contact layers Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer Appl. Analysis of sub-stoichiometric hydrogenated silicon oxide films for surface passivation of crystalline silicon ...
متن کاملAmorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells
متن کامل
Inkjet Printing of Isolation Layers for Back-Contacted Silicon-Heterojunction Solar Cells
For wafer based silicon solar cells, the combination of amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction emitters (SHJ) [1] and back-contacted back-junction solar cell concepts (BCBJ) [2] offer a very high efficiency potential of around 24%. Stangl et al. proposed a relatively simple and therefore attractive cell concept comprising a two level metallization isolated by an insulation l...
متن کاملNovel high-efficiency crystalline-silicon-based compound heterojunction solar cells: HCT (heterojunction with compound thin-layer).
With an amorphous silicon (a-Si:H)/crystalline silicon (c-Si) heterojunction structure, the heterojunction with intrinsic thin-layer (HIT) solar cell has become one of the most promising technologies for c-Si based solar cells. By replacing a-Si:H thin films with appropriate compound semiconductors, we propose novel heterojunction structures which allow c-Si heterojunction solar cells to posses...
متن کامل